Конспект для учителя по теме «Водородная химическая связь»

2733
2

Здравствуйте! Как Вы считаете, что представляет собой химическая связь? Какие типы химической связи Вы знаете?

(Рассуждение с учениками, обсуждение вариантов)



Водородная связь — это взаимодействие между двумя электроотрицательными атомами одной или разных молекул посредством атома водорода: А−Н...В (чертой обозначена ковалентная связь, тремя точками — водородная связь).

Водородная связь обусловлена электростатическим притяжением атома водорода (несущим положительный заряд δ+) к атому электроотрицательного элемента, имеющего отрицательный заряд δ−. В большинстве случаев она слабее ковалентной, но существенно сильнее обычного притяжения молекул друг к другу в твердых и жидких веществах. В отличие от межмолекулярных взаимодействий водородная связь обладает свойствами направленности и насыщаемости, поэтому ее нередко считают одной из разновидностей ковалентной химической связи. Она может быть описана с помощью метода молекулярных орбиталей как трехцентровая двухэлектронная связь.

Одним из признаков водородной связи может служить расстояние между атомом водорода и другим атомом, ее образующим. Оно должно быть меньше, чем сумма радиусов этих атомов. Чаще встречаются несимметричные водородные связи, в которых расстояние Н...В больше, чем А−В. Однако в редких случаях (фтороводород, некоторые карбоновые кислоты) водородная связь является симметричной. Угол между атомами во фрагменте А−Н...В обычно близок к 180o. Наиболее сильные водородные связи образуются с участием атомов фтора. В симметричном ионе [F−H−F] энергия водородной связи равна 155 кДж/моль и сопоставима с энергией ковалентной связи. Энергия водородной связи между молекулами воды уже заметно меньше (25 кДж/моль).

Межмолекулярная и внутримолекулярная водородная связь

Водородные связи обнаружены во многих химических соединениях. Они возникают, как правило, между атомами фтора, азота и кислорода (наиболее электроотрицательные элементы), реже — при участии атомов хлора, серы и других неметаллов. Прочные водородные связи образуются в таких жидких веществах, как вода, фтороводород, кислородсодержащие неорганические кислоты, карбоновые кислоты, фенолы, спирты, аммиак, амины. При кристаллизации водородные связи в этих веществах обычно сохраняются. Поэтому их кристаллические структуры имеют вид цепей (метанол), плоских двухмерных слоев (борная кислота), пространственных трехмерных сеток (лед).

Если водородная связь объединяет части одной молекулы, то говорят о внутримолекулярной водородной связи. Это особенно характерно для многих органических соединений. Если же водородная связь образуется между атомом водорода одной молекулы и атомом неметалла другой молекулы (межмолекулярная водородная связь), то молекулы образуют довольно прочные пары, цепочки, кольца. Так, муравьиная кислота и в жидком и в газообразном состоянии существует в виде димеров:
18
а газообразный фтороводород содержат полимерные молекулы, включающие до четырех частиц HF. Прочные связи между молекулами можно найти в воде, жидком аммиаке, спиртах. Необходимые для образования водородных связей атомы кислорода и азота содержат все углеводы, белки, нуклеиновые кислоты. Известно, например, что глюкоза, фруктоза и сахароза прекрасно растворимы в воде. Не последнюю роль в этом играют водородные связи, образующиеся в растворе между молекулами воды и многочисленными OH-группами углеводов.

Аномалии свойств, обусловленные наличием водородной связи

Наличием водородных связей обусловлены уникальные свойства многих веществ, в том числе воды. Трехатомная молекула Н2О образует четыре водородные связи. В их образовании принимают участие оба атома водорода, а атом кислорода, имеющий две неподеленные электронные пары, образует две водородные связи с атомами водорода соседних молекул воды.
28
Если бы не было водородных связей, то температуры плавления и кипения воды были бы существенно ниже, как это наблюдается у других водородных соединений неметаллов.

Сильные водородные связи между молекулами воды препятствуют ее плавлению и испарению.

Водородные связи являются причиной и другого уникального свойства воды — при плавлении ее плотность возрастает. В структуре льда каждый атом кислорода связан через атомы водорода с четырьмя другими атомами кислорода — из других молекул воды. В результате образуется очень рыхлая "ажурная" структура. Вот почему лед такой легкий.

При плавлении льда около 10% водородных связей разрушается, и молекулы воды немного сближаются. Поэтому плотность жидкой воды при температуре плавления выше, чем плотность льда. Дальнейшее нагревание, с одной стороны, должно вызывать увеличение объема воды. Это происходит со всеми веществами.





Но, с другой стороны, водородные связи продолжают разрушаться, а это должно приводить к уменьшению объема воды. В результате плотность воды изменяется неравномерно. Наибольшее значение (1,00 г/мл) она имеет при температуре 4 oС. Такова зимняя температура вблизи дна пресноводных водоемов, где скапливается вода с максимальной плотностью.

При замерзании вода расширяется и занимает больший объем. Плотность льда (0,92 г/мл) - меньше, чем плотность жидкой воды. Поэтому лед плавает на поверхности воды. Если бы у льда была более высокая плотность, по мере замерзания он опускался бы на дно, что сделало бы жизнь в водоемах зимой невозможной.

Наличие водородных связей влияет и на кислотные свойства многих веществ. Фтороводородная кислота, в отличие от других галогеноводородных кислот является слабой, так как атомы водорода связаны сразу с двумя атомами фтора, что препятствует их отщеплению (по той же причине большинство карбоновых кислот являются слабыми). Благодаря особо прочным водородным связям фтороводородная кислота — единственная одноосновная кислота, способная образовывать кислые соли, например NaHF2.
Закрепление:
В чем особенность водородной химической связи?
Какие особенности обусловлены наличием водородных связей в соединениях?
Домашнее задание:
Выучить и повторить материал из конспекта.

Хотите пойти учиться в колледж?
Выбирайте «Тьюторию»!

Поступление без ОГЭ и ЕГЭ. Обучаем перспективным профессиям
после 9 или 11 класса.

Жмите на баннер!
Текст прошел проверку у экспертов «ИнПро» ®
педагог по химии
педагог по химии
педагог по химии
Ирина Михайловна
методист образовательного холдинга «ИнПро»

Справочно:

Материалы подготовлены Федеральным образовательным сервисом «ИнПро»® – Лицензия Минобрнауки 22Л01 № 0002491.

Готовим детей к школе, а также подтягиваем по школьной программе по всей России в 40+ центрах и онлайн, в том числе в Вашем городе.

Бесплатная горячая линия: 8 800 250 62 49 (с 6 до 14 по Мск).


Следите за новостями в социальных сетях:


Нужен репетитор? Запишитесь на бесплатное пробное занятие в «ИнПро»®

Отправка запроса ни к чему не обязывает, это бесплатно. Будем рады помочь!

Отправляя заявку, Вы соглашаетесь на обработку персональных данных.

Нужен репетитор?
Запишитесь на бесплатное пробное занятие в «ИнПро»®

Отправка запроса ни к чему не обязывает, это бесплатно. Будем рады помочь!

Отправляя заявку, Вы соглашаетесь на обработку персональных данных.
Бесплатное занятие Бесплатное занятие