1. Конспект для учителя по теме «Теорема о прямой, перпендикулярной к плоскости»

#Актуально #Тексты
1015
2
Содержание


Теорема о прямой, перпендикулярной к плоскости. Вспомогательное утверждение

Утверждение

Через любую точку пространства проходит плоскость, перпендикулярная к данной прямой.

g20-1

Рис. 1.

Доказательство (см. рис. 1)

Пусть нам дана прямая а и точка М. Докажем, что существует плоскость γ, которая проходит через точку М и которая перпендикулярна прямой а.

Через прямую а проведем плоскости α и β так, что точка М принадлежит плоскости α. Плоскости α и β пересекаются по прямой а. В плоскости α через точку М проведем перпендикуляр MN (или р) к прямой а, g20-d1В плоскости β из точки N восстановим перпендикуляр q к прямой а. Прямые р и q пересекаются, пусть через них проходит плоскость γ. Получаем, что прямая а перпендикулярна двум пересекающимся прямым р и q из плоскости γ. Значит, по признаку перпендикулярности прямой и плоскости, прямая а перпендикулярна плоскости γ.

Теорема

Через любую точку пространства проходит прямая, перпендикулярная к данной плоскости, и притом только одна.

g20-2

Рис. 2.

Доказательство.

Пусть дана плоскость α и точка М (см. рис. 2). Нужно доказать, что через точку М проходит единственная прямая с, перпендикулярная плоскости α.





Проведем прямую а в плоскости α (см. рис. 3). Согласно доказанному выше утверждению, через точку М можно провести плоскость γ перпендикулярную прямой а. Пусть прямая b– линия пересечения плоскостей α и γ.

g20-3

Рис. 3.

В плоскости γ через точку М проведем прямую с, перпендикулярную прямой b.

Прямая с перпендикулярна b по построению, прямая с перпендикулярна а (так как прямая а перпендикулярна плоскости γ, а значит, и прямой с, лежащей в плоскости γ). Получаем, что прямая с перпендикулярна двум пересекающимся прямым из плоскости α. Значит, по признаку перпендикулярности прямой и плоскости, прямая с перпендикулярна плоскости α. Докажем, что такая прямая с единственная.

Предположим, что существует прямая с1, проходящая через точку М и перпендикулярная плоскости α. Получаем, что прямые с и с1 перпендикулярны плоскости α. Значит, прямые с и с1 параллельны. Но по построению прямые с и с1 пересекаются в точке М. Получили противоречие. Значит, существует единственная прямая, проходящая через точку М и перпендикулярная плоскости α, что и требовалось доказать.

Задачи

Задача 1

Докажите, что если две плоскости α и β перпендикулярны к прямой а, то они параллельны.

g20-4

Рис. 4.

Доказательство:

Проведем прямую с параллельно прямой а. По лемме, если одна из двух параллельных прямых пересекает плоскость, то и другая прямая тоже пересекает плоскость. Прямая а пересекает плоскости α и β по условию. Значит прямая с пересекает плоскость α в некоторой точке А и плоскость β в точке В.

Прямая а перпендикулярна плоскостям α и β, а значит и параллельная ей прямая с перпендикулярна плоскостям α и β.

Предположим, что плоскости α и β пересекаются. Точка М – общая точка плоскостей α и β. Но тогда в треугольнике АМВ угол МАВ равен 90° и угол АВМ равен 90°, что невозможно. Значит, предположение о том, что плоскости α и β пересекаются было неверным. Значит, плоскости α и β параллельны.

Задача 2

Докажите, что через любую точку пространства проходит только одна плоскость, перпендикулярная данной прямой.

g20-5

Рис. 5.

Доказательство:

Пусть дана прямая а и точка М. Согласно утверждению, существует плоскость γ, проходящая через точку М, перпендикулярная прямой а. Докажем ее единственность.

Предположим, что существует плоскость γ1, проходящая через точку М, перпендикулярная прямой а. Две плоскости γ и γперпендикулярны одной и той же прямой а, а значит, плоскости γ и γпараллельны (как мы доказали в задаче 1). Но точка М принадлежит и плоскости γ и γ1. Получили противоречие. Значит, через любую точку пространства проходит только одна плоскость, перпендикулярная данной прямой а, что и требовалось доказать.

 

Еще материалы по теме «2.20 Теорема о прямой, перпендикулярной к плоскости»



Хотите пойти учиться в колледж?
Выбирайте «Тьюторию»!

Поступление без ОГЭ и ЕГЭ. Обучаем перспективным профессиям
после 9 или 11 класса.

Жмите на баннер!
Текст прошел проверку у экспертов «ИнПро» ®
педагог по математике
педагог по математике
педагог по математике
Ирина Михайловна
методист образовательного холдинга «ИнПро»

Справочно:

Материалы подготовлены Федеральным образовательным сервисом «ИнПро»® – Лицензия Минобрнауки 22Л01 № 0002491.

Готовим детей к школе, а также подтягиваем по школьной программе по всей России в 40+ центрах и онлайн, в том числе в Вашем городе.

Бесплатная горячая линия: 8 800 250 62 49 (с 6 до 14 по Мск).


Следите за новостями в социальных сетях:


Нужен репетитор? Запишитесь на бесплатное пробное занятие в «ИнПро»®

Отправка запроса ни к чему не обязывает, это бесплатно. Будем рады помочь!

Отправляя заявку, Вы соглашаетесь на обработку персональных данных.

Нужен репетитор?
Запишитесь на бесплатное пробное занятие в «ИнПро»®

Отправка запроса ни к чему не обязывает, это бесплатно. Будем рады помочь!

Отправляя заявку, Вы соглашаетесь на обработку персональных данных.
Бесплатное занятие Бесплатное занятие