1. Конспект для учителя по теме «Решение задач теории вероятностей, комбинаторике»

2498
2


Переход к основной теме:

Задание 1.

Сколькими способами могут быть расставлены 5 участниц финального забега на 5-ти беговых дорожках?

Решение:

23-p1

Задание 2.

Сколько трехзначных чисел можно составить из цифр 1,2,3, если каждая цифра входит в изображение числа только один раз?

Решение:

Число всех перестановок из трех элементов равно

23-p2

Значит, существует шесть трехзначных чисел, составленных из цифр 1, 2, 3.





 

Задание 3.

Сколькими способами четверо юношей могут пригласить четырех из шести девушек на танец?

Решение:

Два юноши не могут одновременно пригласить одну и ту же девушку. И

варианты, при которых одни и те же девушки танцуют с разными юношами,

считаются разными, поэтому:

23-p3

Задание 4.

Сколько различных трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 при условии, что в записи числа каждая цифра используется только один раз?

Решение:

В условии задачи предложено подсчитать число всевозможных комбинаций из трех цифр, взятых из предположенных девяти цифр, причём порядок

расположения цифр в комбинации имеет значение (например, числа 132 и 231 различные). Иначе говоря, нужно найти число размещений из девяти элементов по три. По формуле числа размещений находим:

23-p4

Задание 5.

Сколькими способами из 7 человек можно выбрать комиссию, состоящую из 3 человек?

Решение:

Чтобы рассмотреть все возможные комиссии, нужно рассмотреть все возможные 3 – элементные подмножества множества, состоящего из 7 человек. Искомое число способов равно

23-p5

Задание 6.

В соревновании участвуют 12 команд. Сколько существует вариантов распределения призовых (1, 2, 3) мест?

Решение:

23-p6

вариантов распределения призовых мест.

 

Задание 7.

На соревнованиях по лёгкой атлетике нашу школу представляла команда из 10 спортсменов. Сколькими способами тренер может определить, кто из них побежит в эстафете 4´100 м на первом, втором, третьем и четвёртом этапах?

Решение:

Выбор из 10 по 4 с учётом порядка:

23-p7

способов.

 

Задание 8.

Сколькими способами можно выложить в ряд красный, черный, синий и зеленый шарики?

Решение:

На первое место можно поставить любой из четырех шариков (4 способа), на второе – любой из трех оставшихся (3 способа), на третье место – любой из оставшихся двух (2 способа), на четвертое место – оставшийся последний шар.

23-p8

 

Задание 9.

Вася, Петя, Коля и Леша бросили жребий - кому начинать игру. Найдите вероятность того, что начинать игру должен будет Петя.

Решение:

Случайный эксперимент – бросание жребия. Элементарное событие в этом эксперименте – участник, который выиграл жребий. Перечислим их:

(Вася), (Петя), (Коля) и (Лёша).

Общее число элементарных событий N = 4. Жребий подразумевает, что элементарные события равновозможны. Событию A = (жребий выиграл Петя)

благоприятствует только одно элементарное событие (Петя). Поэтому N(A)=1.

Тогда

23-p9

Ответ: 0,25.

 

Задание 10.

Игральный кубик (кость) бросили один раз. Какова вероятность того, что выпало число очков, больше чем 4?

Решение:

Случайный эксперимент – бросание кубика. Элементарное событие –число на выпавшей грани. Граней всего шесть. Перечислим все элементарные события: 1,2,3,4,5 и 6. Значит, N=6. Событию A=(выпало больше, чем 4) благоприятствует два элементарных события: 5 и 6. Поэтому N(A) = 2. Элементарные события равновозможны, поскольку подразумевается, что кубик честный. Поэтому

23-p10

Ответ: 23-p11.

 

Задание 11.

В случайном эксперименте бросают два игральных кубика. Найдите вероятность того, что в сумме выпадет 8 очков.

Решение:

Элементарный исход в этом опыте – порядочная пара чисел. Первое число выпадает на первом кубике, а второе – на втором. Множество элементарных исходов удобно представить таблицей. Строки соответствуют результату первого броска, столбцы – результату второго броска. Всего элементарных событий N = 3.

1 2 3 4 5 6

2

3

4

5

6

7

3

4

5

6

7

8

4

5

6

7

8

9

5

6

7

8

9

10

6

7

8

9

10

11

7

8

9

10

11

12

1

2

3

4

5

6

Напишем в каждой клетке таблицы сумму выпавших очков и закрасим клетки где сумма равна 8. Таких ячеек 5. Значит событию А = (сумма равна 8) благоприятствует пять элементарных исходов. Следовательно, N(A) = 5.

Поэтому

23-p12

Задание 12.

В случайном эксперименте монету бросили три раза. Какова вероятность того, что орел выпал ровно два раза?

Решение:

Орёл обозначим буквой О, решку – буквой Р. В описанном эксперименте элементарные исходы – тройки, составленные из букв О и Р. Выпишем все их в таблицу:

 

Элементарный исход

Число орлов

ООО

3

ООР

2

ОРО

2

ОРР

1

РОО

2

РОР

1

РРО

1

РРР

0

 

Всего исходов получилось 8. Значит, N=8. Событию А = (орёл выпал ровно два раза) благоприятствует элементарные события ООР, ОРО, РОО. Поэтому N(A)=3. Тогда

23-p13

Ответ: 0,375.

 

Задание 13.

В соревнованиях по толканию ядра участвуют 4 спортсмена из Финляндии, 7 спортсменов из Дании, 9 спортсменов из Швеции и 5- из Норвегии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, который выступает последним, окажется из Швеции.

Решение:

Элементарный исход – спортсмен, который выступает последним. Последним может оказаться любой спортсмен. Всего спортсменов N=4+7+9+5+5=25. Событию А = (последний из Швеции) благоприятствуют только 9 исходов (столько, сколько участвует шведских спортсменов). Поэтому N(A)=9.

Тогда

23-p14

Ответ: 0,36.

 

Задание 14.

В чемпионате по гимнастике участвуют 20 спортсменок: 8 из России, 7 из США, остальные – из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая.

Решение:

Элементарные события – спортсменка, выступающая первой. Поэтому N=20. Чтобы найти число элементарных событий, благоприятствующих событию А = (первой выступает спортсменка из Китая), нужно подсчитать число спортсменок из Китая: N(A)=20-(8+7)=5. Все элементарные события равновозможны по условию задачи, поэтому

23-p15

Задание 15.

Фабрика выпускает сумки. В среднем на 100 качественных сумок приходится восемь сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых.

Решение:

Элементарный исход – случайно выбранная сумка. Поэтому N = 108.

Событию А = (качественная сумка) благоприятствуют 100 исходов.

Поэтому N(A) = 100.

Тогда

23-p16

Еще материалы по теме «23. Решение задач теории вероятностей, комбинаторике »



Хотите пойти учиться в колледж?
Выбирайте «Тьюторию»!

Поступление без ОГЭ и ЕГЭ. Обучаем перспективным профессиям
после 9 или 11 класса.

Жмите на баннер!
Текст прошел проверку у экспертов «ИнПро» ®
педагог по математике
педагог по математике
педагог по математике
педагог по математике

Справочно:

Материалы подготовлены Федеральным образовательным сервисом «ИнПро»® – Лицензия Минобрнауки 22Л01 № 0002491.

Готовим детей к школе, а также подтягиваем по школьной программе по всей России в 40+ центрах и онлайн, в том числе в Вашем городе.

Бесплатная горячая линия: 8 800 250 62 49 (с 6 до 14 по Мск).


Следите за новостями в социальных сетях:


Нужен репетитор? Запишитесь на бесплатное пробное занятие в «ИнПро»®

Отправка запроса ни к чему не обязывает, это бесплатно. Будем рады помочь!

Отправляя заявку, Вы соглашаетесь на обработку персональных данных.

Нужен репетитор?
Запишитесь на бесплатное пробное занятие в «ИнПро»®

Отправка запроса ни к чему не обязывает, это бесплатно. Будем рады помочь!

Отправляя заявку, Вы соглашаетесь на обработку персональных данных.
Бесплатное занятие Бесплатное занятие