1. Конспект для учителя по теме «Решение логарифмических неравенств»

#Актуально #Упражнения
7
2

Здравствуйте! Сегодня потренируем навыки решения логарифмических неравенств.

Содержание

Проверка домашнего задания.

Переход к основной теме:

Сложные логарифмические неравенства

Среди всего многообразия логарифмических неравенств отдельно изучают неравенства с переменным основанием. Они решаются по специальной формуле, которую почему-то редко рассказывают в школе:

31-f1

Вместо галки «∨» можно поставить любой знак неравенства: больше или меньше. Главное, чтобы в обоих неравенствах знаки были одинаковыми.

Так мы избавляемся от логарифмов и сводим задачу к рациональному неравенству. Последнее решается намного проще, но при отбрасывании логарифмов могут возникнуть лишние корни. Чтобы их отсечь, достаточно найти область допустимых значений. Если вы забыли ОДЗ логарифма, настоятельно рекомендую повторить — см. «Что такое логарифм».

Все, что связано с областью допустимых значений, надо выписать и решить отдельно:

31-f2

Эти четыре неравенства составляют систему и должны выполняться одновременно. Когда область допустимых значений найдена, остается пересечь ее с решением рационального неравенства — и ответ готов.

31-f3

Для начала выпишем ОДЗ логарифма:

31-r1

Первые два неравенства выполняются автоматически, а последнее придется расписать. Поскольку квадрат числа равен нулю тогда и только тогда, когда само число равно нулю, имеем:

31-r2

Получается, что ОДЗ логарифма — все числа, кроме нуля: 31-r3 Теперь решаем основное неравенство:

31-r4

Выполняем переход от логарифмического неравенства к рациональному. В исходном неравенстве стоит знак «меньше», значит полученное неравенство тоже должно быть со знаком «меньше». Имеем:

31-r5

Нули этого выражения: x = 3; x = −3; x = 0. Причем x = 0 — корень второй кратности, значит при переходе через него знак функции не меняется. Имеем:

31-r6

Получаем 31-r7. Данное множество полностью содержится в ОДЗ логарифма, значит это и есть ответ.

Преобразование логарифмических неравенств

Часто исходное неравенство отличается от приведенного выше. Это легко исправить по стандартным правилам работы с логарифмами — см. «Основные свойства логарифмов». А именно:

  1. Любое число представимо в виде логарифма с заданным основанием;
  2. Сумму и разность логарифмов с одинаковыми основаниями можно заменить одним логарифмом.

Отдельно хочу напомнить про область допустимых значений. Поскольку в исходном неравенстве может быть несколько логарифмов, требуется найти ОДЗ каждого из них. Таким образом, общая схема решения логарифмических неравенств следующая:

  1. Найти ОДЗ каждого логарифма, входящего в неравенство;
  2. Свести неравенство к стандартному по формулам сложения и вычитания логарифмов;
  3. Решить полученное неравенство по схеме, приведенной выше.

31-f4

Найдем область определения (ОДЗ) первого логарифма:

31-rr1

Решаем методом интервалов. Находим нули числителя:

31-rr2

Затем — нули знаменателя:

31-rr3

Отмечаем нули и знаки на координатной стреле:

31-rr4

Получаем 31-rr5 У второго логарифма ОДЗ будет таким же. Не верите — можете проверить. Теперь преобразуем второй логарифм так, чтобы в основании стояла двойка:

31-f5

Как видите, тройки в основании и перед логарифмом сократились. Получили два логарифма с одинаковым основанием. Складываем их:

31-rr6

Получили стандартное логарифмическое неравенство. Избавляемся от логарифмов по формуле. Поскольку в исходном неравенстве стоит знак «меньше», полученное рациональное выражение тоже должно быть меньше нуля. Имеем:

31-rr7

Получили два множества:

31-rr8

Осталось пересечь эти множества — получим настоящий ответ:

31-rr9

Нас интересует пересечение множеств, поэтому выбираем интервалы, закрашенные на обоих стрелах. Получаем 31-rr99 — все точки выколоты.

7
2
#Актуально #Упражнения
Текст прошел проверку у экспертов «ИнПро» ®
педагог по математике
педагог по математике
педагог по математике
Ирина Михайловна
методист образовательного холдинга «ИнПро»

Справочно:

Материалы подготовлены Федеральным образовательным сервисом «ИнПро»® – Лицензия Минобрнауки 22Л01 № 0002491.

Готовим детей к школе, а также подтягиваем по школьной программе по всей России в 40+ центрах и онлайн, в том числе в Вашем городе.

Бесплатная горячая линия: 8 800 250 62 49 (с 6 до 14 по Мск).


Следите за новостями в социальных сетях:


Нужен репетитор? Запишитесь на бесплатное пробное занятие в «ИнПро»®

Отправка запроса ни к чему не обязывает, это бесплатно. Будем рады помочь!

Отправляя заявку, Вы соглашаетесь на обработку персональных данных.


В текущем разделе «31. Решение логарифмических неравенств » также читают

Нужен репетитор?
Запишитесь на бесплатное пробное занятие в «ИнПро»®

Отправка запроса ни к чему не обязывает, это бесплатно. Будем рады помочь!

Отправляя заявку, Вы соглашаетесь на обработку персональных данных.
Записаться на бесплатное занятие Бесплатное занятие